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SUMMARY

Mycobacterium leprae causes leprosy and is unique
among mycobacterial diseases in producing periph-
eral neuropathy. This debilitating morbidity is attrib-
uted to axon demyelination resulting fromdirect inter-
action of the M. leprae-specific phenolic glycolipid 1
(PGL-1) with myelinating glia and their subsequent
infection. Here, we use transparent zebrafish larvae
to visualize the earliest events of M. leprae-induced
nerve damage.We find that demyelination and axonal
damage are not directly initiated by M. leprae but
by infected macrophages that patrol axons; demye-
lination occurs in areas of intimate contact. PGL-1
confers this neurotoxic response on macrophages:
macrophages infected with M. marinum-expressing
PGL-1 also damage axons. PGL-1 induces nitric
oxide synthase in infected macrophages, and the
resultant increase in reactive nitrogen species
damages axons by injuring their mitochondria and
inducing demyelination. Our findings implicate the
response of innate macrophages to M. leprae PGL-1
in initiating nerve damage in leprosy.

INTRODUCTION

Leprosy, like tuberculosis, presents as a granulomatous disease.

These granulomas are usually cutaneous, reflecting the �30�C
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growth optimum of M. leprae, similar to that of the human skin

(�34�C) (Bierman, 1936; Renault and Ernst, 2015; Truman and

Krahenbuhl, 2001). M. leprae is the only mycobacterial infection

that causes widespread demyelinating neuropathy, which re-

sults in the main morbidities of leprosy, including autoamputa-

tion of digits and blindness (Renault and Ernst, 2015). Under-

standing the pathogenesis of leprosy neuropathy has been

stymied by the inability to culture M. leprae, which has under-

gone severe reductive evolution of its genome to become an

obligate intracellular pathogen (Cole et al., 2001; Scollard

et al., 2006). The lack of genetic tools for studying M. leprae is

compounded by the lack of genetically tractable animal models

that mimic the human disease. The athymic mouse footpad is

used to grow M. leprae for research purposes, but mice do not

manifest neurological disease (Scollard et al., 2006). While the

nine-banded armadillo develops neuropathy following infection

withM. leprae, it suffers from a paucity of molecular and genetic

tools (Truman et al., 2014). Consequently, our understanding of

the pathogenesis of leprosy neuropathy in vivo largely comes

from studies of patients; however, the 4- to 10-year delay in

the onset of symptoms largely precludes studies of the early

events that lead to neuropathy (Noordeen, 1994).

Leprosy can present as a clinical spectrum; at the poles of this

spectrum are paucibacillary (or tuberculoid) and multibacillary (or

lepromatous) disease. The former is characterized by a vigorous

immune response, while the latter, an ineffective one (Scollard

et al., 2006). Neuropathy features prominently in both forms of

the disease. Hence, bacterial determinants and host immune re-

sponses likely play roles in leprosy neuropathy, although the rela-

tive importance and mechanisms by which each contributes to
ugust 24, 2017 ª 2017 The Authors. Published by Elsevier Inc. 973
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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nerve injury are poorly understood. In vitro studies suggest

a model wherein M. leprae directly causes demyelination by in-

fecting and dedifferentiating the Schwann cells that myelinate pe-

ripheral nerves (Rambukkana et al., 2002; Truman et al., 2014).

These studies identified an M. leprae outer membrane lipid,

phenolic glycolipid 1 (PGL-1), that is critical for binding to laminin

a2, an interaction thought to promote infection of the Schwann

cells (Ng et al., 2000). However, thismodel fails to explain the neu-

ropathy in paucibacillary leprosy, in which bacteria are seldom

observed within nerve lesions (Shetty and Antia, 1996). Rather,

a pathogenic CD4 T cell response, possibly acting through

secreted cytokines, is implicated in paucibacillary disease (Re-

nault and Ernst, 2015). Further, the specific contributions of mac-

rophages in leprosy neuropathy are unknown, although they are

commonly infected and almost universally present in affected

nerves (Job, 1973; Shetty and Antia, 1996).

The developing zebrafish is an effective model for studying

mycobacterial pathogenesis using M. marinum, a close genetic

relative of theM. tuberculosis complex and the agent of fish tuber-

culosis (Ramakrishnan, 2004). Thegenetic tractabilityof the zebra-

fish, coupledwith the optical transparencyof its larva, allowshost-

bacterium interactions to be monitored in real-time, providing

critical insights into disease pathogenesis (Ramakrishnan, 2004).

Furthermore, adaptive immunity is not yet present at the larval

developmental stage, permitting study of host-pathogen interac-

tions in the sole context of innate immunity (Davis et al., 2002).

Here, we exploit the optical transparency of larval zebrafish to

directly visualize the earliest interactions ofM. lepraewith macro-

phages (Davis et al., 2002), and the initial events in nerve injury

(Czopka, 2016). We use M. marinum as a comparator for these

studies because, likeM. leprae, it grows at �30�C and produces

cutaneous granulomatous infections in humans (Ramakrishnan,

2004). However, it does not cause neuropathy. Our studies reveal

thatM. leprae interactswithmacrophages and incites granulomas

similar to M. marinum (Madigan et al., 2017), but is unique in its

ability to produce demyelination and axonal damage. We show

that the innatemacrophage response to PGL-1 triggers demyelin-

ation in vivo, even before bacilli have detectably infected the glia.

Finally, we determine the mechanism of nerve damage using

M. leprae andM. marinum engineered to synthesize PGL-1.

RESULTS

M. leprae Elicits Typical Responses in Macrophages
of Zebrafish Larvae
To determine if zebrafish larvae might be a useful model for

studying early M. leprae infection, we first examined the earliest

interactions of M. leprae with phagocytes, by injecting bacteria

into the caudal vein or the hindbrain ventricle (Figure 1A), where

phagocytes are rarely observed in the absence of infection (Da-

vis et al., 2002). Aggregates of infected macrophages formed

within 4 days (Figure 1B), similar to the case with M. marinum

infection (Davis et al., 2002). Prior studies indicate that phago-

cyte recruitment to M. marinum infection is unique in two re-

spects: (1) neutrophils are not recruited to the initial site of infec-

tion (Yang et al., 2012), and (2) macrophage recruitment is

independent of TLR-signaling, but dependent on the monocyte

chemokine CCL2 and its receptor CCR2 (Cambier et al., 2014).
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M. leprae shared both of these features withM.marinum: neutro-

phils were not recruited, whereas macrophages were (Figures

1C and 1D). Further, this recruitment was TLR/MyD88 indepen-

dent and CCL2/CCR2 dependent (Figure 1D) (Cambier et al.,

2014). The M. marinum phenolic glycolipid (PGL-mar) induces

CCL2 expression andmediates CCL2/CCR2-dependent macro-

phage recruitment (Cambier et al., 2014, 2017), suggesting that

PGL-1 may play a similar role in M. leprae infection.

Macrophages play a dichotomous role in controlling

M. marinum infection: they restrict bacterial numbers, while pro-

moting dissemination of bacteria from the infection site into

deeper tissues (Clay et al., 2007). Similar to the case observed

for M. marinum, M. leprae-infected animals depleted of macro-

phages using the pu.1 morpholino (Clay et al., 2007) displayed

higher bacterial burdens (Figures 1E and 1F). The increased bac-

terial burden in the pu.1morphants is likely due to the lack of bac-

terial killing, rather than bacterial replication. The doubling time of

M. leprae is approximately 12 days (Levy and Ji, 2006); therefore,

most bacteria would not have replicated in the larvae during the

2-day infection. In addition, we assessed the role ofmacrophages

in M. leprae dissemination, by infecting animals with fluorescent

vascular endothelial cells (kdrl:dsRed). By 2 days post-infection

(dpi) (4 dpf), M. leprae escaped the vasculature and entered pe-

ripheral tissues in the majority of wild-type, but not macro-

phage-depleted, larvae (Figures 1G and 1H). Furthermore, in

wild-type animals, M. leprae resided in macrophages (apparent

by Nomarski imaging in Figure S1), suggesting these cells carried

M. leprae from the circulation into tissues. This is reminiscent of

zebrafish infected with M. marinum, in which infected macro-

phages disseminate bacteria from the initial infection site into

the body (Clay et al., 2007). In sum,M. lepraedisplays interactions

with macrophages, from initial recruitment through granuloma

formation, that resemble those seen for M. marinum. The pres-

ence of M. leprae-infected macrophages in the circulation of

larvae mirrors findings in human leprosy (Drutz et al., 1972).

M. leprae Infection Alters Myelin Structure
We next investigated the interactions of M. leprae with cells of

the zebrafish nervous system, to determine if infection produced

demyelination. Transgenic mbp (myelin basic protein) larvae ex-

press membrane-localized GFP that labels the myelinating

membrane of glia in both the peripheral nervous system

(Schwann cells) and central nervous system (oligodendrocytes)

(Jung et al., 2010). Oligodendrocytes express all Schwann

cell determinants that have been reported to interact with

M. leprae (Table S1), and myelin structure is similar in the central

and peripheral nervous systems (Morell and Quarles, 1999).

Therefore, we studied M. leprae interactions with nerves in the

spinal cord rather than peripheral nerves because of their easier

accessibility. We injected fluorescent M. leprae into the dorsal

spinal cord of larvae at 2–4 days post-fertilization (dpf), and

imaged nerves at 4–8 dpf, a developmental stage at which these

tracts have become myelinated (Czopka, 2016) (Figures 2A and

2B). At 2 dpi (4 dpf), we observed cellular protrusions from an

otherwise intact myelin sheath, clustered around M. leprae in

the nerve (Figure 2C). M. marinum injected into the dorsal spinal

cord did not alter the myelinating membrane structure, even

though theM.marinum burdens at the injection sites were higher
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Figure 1. Early M. leprae-Macrophage In-

teractions Are Typical of Other Mycobacte-

rial Infections

(A) Diagram of larva 2 days post-fertilization (dpf)

with injection sites indicated.

(B) Representative confocal image of an early

aggregate of fluorescent macrophages (dashed

line) adjacent to the yolk sac in a 6 dpf mpeg1:

Brainbow larva at 4 days post-infection (dpi) with

�104 fluorescent M. leprae. Scale bar, 10 mm.

(C) Mean number of neutrophils recruited to the

hindbrain ventricle after injection of �100 colony-

forming units (CFUs) of P. aeruginosa (Pa),

M. marinum, or M. leprae in a 2 dpf larva at 4 hr

post-infection; *p < 0.05; **p < 0.01; ***p < 0.001

(one-way ANOVA with Bonferroni’s post-test).

(D) Mean number of macrophages recruited to

M. marinum (Mm) or M. leprae (Mlep) injection,

like in (C), in wild-type (ctrl) animals or thosemade

deficient in CCR2 or MyD88 by morpholino (MO)

injection; ***p < 0.001, ****p % 0.0001 (one-way

ANOVA with Bonferroni’s post-test).

(E) Representative fluorescent images of 2 dpi

(4 dpf) WT or macrophage-deficient pu.1 mor-

phant larvae, infected with fluorescent M. leprae

like in (B); the arrow indicates the injection site.

Scale bar, 100 mm.

(F) Mean bacterial burden of larvae in (E); unpaired

Student’s t test.

(G) Representative confocal image of the fluo-

rescent vasculature of a 2 dpi (4 dpf) kdrl:dsRed

larva infected with fluorescent M. leprae; bac-

teria reside within macrophages, apparent by

Nomarski microscopy (Figure S1). The arrow in-

dicates M. leprae retained within vessels; arrow-

heads indicate M. leprae outside of vessels; ISV,

intersegmental vessel; asterisk, M. leprae-in-

fected macrophage surrounding the abluminal

surface of the vessel.

(H) Proportion of larvae in (G) with M. leprae

disseminated outside or contained within the

vasculature, 4 days after caudal vein infection, in

larvae depleted of macrophages, or not, by

clondronate injection (Fisher’s exact test). n =

number of larvae per group; all data representa-

tive of at least three separate experiments.

See also Figure S1.
than those inM. leprae infections (Figures 2C–2E). TheM. leprae-

induced myelin protrusions increased in size and number with

time but always remained next to the bacteria (Figure 2F).

Three-dimensional rendering showed that protrusions were

doughnut shaped, not spherical, suggesting that these struc-

tures were not cell bodies but rather protrusions of myelinating

membrane (Figure 2G; Movie S1).

Expression of PGL-1 in M. marinum Confers Capacity
to Alter Myelin Structure
In vitro studies suggest thatM. leprae interacts with glial determi-

nants through a surface-localized long chain lipid, known

as PGL-1 (m/z 2,043.75), which carries a unique trisaccharide

(Ng et al., 2000; Renault and Ernst, 2015) (Figure S2A). The

phenolic glycolipid of M. marinum contains a monosaccharide
and shorter lipid chains that renders it detectable at a lower

mass value (m/z 1,567.44) (Figures 3A and S2B). We wondered

if the trisaccharide that is normally found on M. leprae PGL-1

would be sufficient to render M. marinum capable of altering

myelin. We transformedM.marinumwith the sixM. leprae genes

responsible for assembly of PGL-1’s terminal disaccharide (Tab-

ouret et al., 2010). Ion chromatograms (Figures 3A and 3B) and

collision-induced dissociation mass spectrometry (Figure S2)

of total lipid from the transformant, M. marinum:PGL-1, proved

that it produced triglycosylated PGL-1. PGL-1 expression

conferred onM. marinum the ability to cause myelin protrusions,

indistinguishable from those ofM. leprae in bothmorphology and

their invariable co-localization with the bacteria (Figures 3C–3E).

The protrusions, like those produced by M. leprae, did not

colocalize with a histone marker that labels cell nuclei. This
Cell 170, 973–985, August 24, 2017 975
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Figure 2. M. leprae Triggers Myelin Disso-

ciation

(A) Left, diagram of a spinal cord injection in an

mbp:eGFP-CAAX larva (mbp), with fluorescent

myelinatingmembrane, at 4 days post-fertilization

(dpf). Transverse (middle) and sagittal (right) views

of the region show the spinal cord (black), dorsal

(d), and ventral (v) tracts of myelinated axons

(green surrounding white axons), neuronal cell

bodies (dark gray circles), and the ventral roots of

spinal nerves (VR) surrounded by muscle (blue)

and notochord (light gray). Arrows indicate intact

myelin sheaths surrounding axons.

(B) Confocal image corresponding to (A). Scale

bar, 10 mm.

(C) Representative confocal images of 4 dpf mbp

larvae, 2 days post-infection (dpi) with �104

M. leprae, or �200 CFUs of M. marinum; arrow-

heads indicate myelin protrusions, quantified in

(D). Scale bar, 10 mm.

(D) Mean number of myelin protrusions per animal

following injection with PBS vehicle (veh),

M. marinum, or M. leprae (*p < 0.05; one-way

ANOVA, Bonferroni’s post-test).

(E) Mean bacterial burden of larvae from (C);

measured by fluorescent pixel intensity like in

Figure 1F.

(F and G) Representative confocal image (F) and

rendering (G) of myelin protrusions in a 6 dpf larva

4 dpi with �104 M. leprae (Movie S1). Scale bar,

10 mm.

See also Table S1 and Movie S1.
suggested they did not simply represent an accumulation of

oligodendrocyte cell bodies, but rather were composed of mye-

linating membrane (Figure 3F). Using time-lapse imaging to

observe the formation of protrusions in real time, we observed

that an intact myelin sheath near the M. marinum:PGL-1 injec-

tion site began to condense and then bulge (Figure 3G). Protru-

sions formed by 10 hr post-infection and expanded over time

(Figure 3G). To further test if myelin protrusions represent

recruitment or proliferation of oligodendrocyte cell bodies, we

generated larvae with a single GFP-labeled oligodendrocyte.

Time-lapse movies of these larvae showed that individual oligo-

dendrocytes form myelin protrusions by retracting portions of

myelinating membrane from previously intact sheaths (Movie

S2A). This occurred after injection with M. marinum:PGL-1,

but not with PBS (compare Movies S2A and S2B). These find-

ings strongly suggested that the protrusions arise from previ-

ously intact myelin sheaths, consistent with early demyelin-

ation. Similar to human leprosy (de Freitas and Said, 2013),

myelin dissociation occurred in discrete areas, with the sur-

rounding myelin sheaths remaining intact (Figures S3A–S3D).

Transmission Electron Microscopy Shows PGL-1-
Mediated Demyelination and Axonal Damage
Demyelination can be imaged in detail by transmission electron

microscopy (TEM). We compared TEM images of transverse

sections through areas of myelin protrusions at 2 days after
976 Cell 170, 973–985, August 24, 2017
infection to identical sections through the injection site of PBS-

injected fish (Figures 4A–4C). TEMs from animals injected with

M. leprae or M. marinum:PGL-1 revealed a selective decrease

in myelinated axons, while the total number of axons was pre-

served (Figures 4D, 4E, S3E, and S3F). Higher-magnification

images revealed apparently intact axons surrounded by disorga-

nized myelin, with large spaces in between the individual

lamellae (Figure S3G); this myelin decompaction is characteristic

of early demyelination in human leprosy (Figure 4F) (Job, 1973;

Shetty et al., 1988). The condensed, fragmented myelin, which

was no longer associated with axons, was observed scattered

throughout the extracellular space (Figures 4A–4C and S3G).

In vitro studies have focused on M. leprae-induced demyelin-

ation as a mechanism of nerve injury (Rambukkana et al., 2002;

Scollard, 2008). However, the peripheral neuropathy of human

leprosy involves both myelinated and nonmyelinated axons (Me-

deiros et al., 2016; Shetty and Antia, 1996; Shetty et al., 1988). To

test if nonmyelinated axons were also affected in zebrafish, we

selected an area of the spinal cord containing only one myelin-

ated axon surrounded by many nonmyelinated axons. We

observed swelling of nonmyelinated axons, as evidenced by

their increased area compared to PBS-injected control (Figures

4G and 4H). Thus, M. leprae and M. marinum:PGL-1 rapidly

induce damage to both myelinated and nonmyelinated axons

in the zebrafish, similar to the pathological changes found in

human leprosy.
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Figure 3. Phenolic Glycolipid 1 Triggers Myelin Dissociation

(A) Normal phase high-performance liquid chromatography mass spectrom-

etry measured at the known mass-to-charge ratios (m/z) for triglycosylated

and monoglycosylated forms of PGL, leading to the separate detection of

PGL-mar (m/z 1,567.44, upper structure) and PGL-1 (m/z 1,903.58, lower

structure) in total lipid extracts of the indicated strains (B).
M. leprae-Induced Nerve Damage Is Mediated by
Macrophages
Contrary to the previous model (Rambukkana, 2000), our find-

ings in vivo did not support contact or infection of glia by

M. leprae early in infection. We did not observe mycobacteria

within myelin protrusions by confocal microscopy (Figure 2F),

nor did we observe bacteria in direct contact with myelin or in-

fected glia by TEM. All observed bacteria were within phago-

somes of macrophages abutting the axons (Figures 5A and

5B). Given the presence of macrophages in the demyelinating le-

sions, we wondered if infected macrophages, rather than bacte-

ria directly, initiated demyelination and nerve damage. Three

findings in human leprosy support this idea: (1) macrophages,

including those harboring M. leprae, are abundant in affected

nerves even early in disease (Job, 1973; Pandya and Antia,

1974; Shetty and Antia, 1996; Shetty et al., 1988). (2) Early stages

of demyelination feature vacuolar myelin structures, in which the

lamellae have split and separated (Job, 1973), associated with

infected macrophages beneath the basement membrane of

Schwann cells. (3) The unique trisaccharide of M. leprae PGL-1

confers both demyelinating (Ng et al., 2000; Renault and Ernst,

2015) and macrophage-modulating effects in vitro (Manca

et al., 2012; Tabouret et al., 2010). The plausibility of a macro-

phage-induced mechanism is further supported by findings

that macrophages mediate demyelination and nerve damage in

multiple sclerosis and Guillain-Barré syndrome (Bogie et al.,

2014; Martini et al., 2008; Martini and Willison, 2016; Niki�c

et al., 2011).

Macrophages are associated with nerves under homeostatic

conditions in humans and rodents, both in the peripheral and

central nervous systems (Kierdorf et al., 2013; Klein and Martini,

2016; Müller et al., 2010). In the case of nerve injury, their

numbers increase (Klein andMartini, 2016), presumably because

they play roles in scavenging debris and repair. In the zebrafish

too, we observed macrophages arriving from the blood and

patrolling axons in uninjected larvae, and their numbers

increased in response to the trauma of PBS injection (Movies

S3, S4, and S5).

We asked if infection with PGL-1-expressing bacteria made

these macrophages capable of demyelinating axons. We
(B) Chromatograms of the ions depicted in (A), showing the increased retention

time of PGL-1 from M. marinum:PGL-1 (Mm:PGL1) compared to that of PGL-

mar from WT M. marinum.

(C) Representative confocal images, like in Figure 2C, of 2 dpi (4 dpf) larvae

infected with�200 CFUM.marinum orM.marinum:PGL-1; myelin protrusions

are quantified in (D). Scale bar, 10 mm.

(D) Mean number of myelin protrusions per animal in uninjected larvae (unt) or

after injection with PBS vehicle (veh),M.marinum, orM.marinum:PGL-1 (�200

CFU each; *p < 0.05, one-way ANOVA with Bonferroni’s post-test).

(E) Mean bacterial burden at the injection site of larvae from (D).

(F) Representative confocal image of a 6 dpf larva with fluorescently labeled

nuclei, 4 dpi with M. marinum:PGL-1 (�100 CFU). Asterisk indicates an

aggregate of infected cells. Scale bar, 10 mm.

(G) Stills from time-lapse imaging of an mbp larva injected with

M. marinum:PGL-1, showing myelin protrusions forming from apparently

intact myelin. Arrow, intact myelin sheath; arrowheads, myelin protrusions.

Relative time code. Scale bar, 10 mm.

See also Figures S2 and S3 and Movie S2.
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Figure 4. M. leprae Alters Nerve Ultrastruc-

ture

(A–C) Representative confocal images of the

spinal cord injection site (upper; scale bar, 10 mm)

in mbp larvae at 2 dpi (5 dpf). Insets show mag-

nifications of boxed regions; dashed lines indicate

approximate location of the TEM section, shown

below with 1 mm scale bars. Highlights indicate

myelinated axons (pink), nonmyelinated axons

(orange), decompacted myelin (green highlight

and arrows), and myelin dissociated from axons

(blue highlight and arrows). N, neuronal cell body.

Apparent yellow in (B) is due to colocalization of

redM. leprae and greenmyelin and bleed-through

of the red PKH into the green channel.

(D and E) Mean number of myelinated axons (D)

and total axons (E) per hemi-spinal cord section in

larvae injected with PBS vehicle (veh), M. leprae,

or M. marinum:PGL-1. (Two hemi-spinal cords

scored per larvae; three larvae per group; one-

way ANOVA with Bonferonni’s post-test; *p <

0.05; ***p < 0.001.)

(F) Myelin decompaction in a radial nerve biopsy

from a leprosy patient (left) (Job 1973, republished

with permission), compared to similar alterations

in the myelin of a M. leprae-infected larva (right).

MY, myelin; AX, axon; highlights indicate myelin-

ated axons (pink) and decompacted myelin

(green); scale bar, 1 mm.

(G) TEMs of larvae obtained like in (A), through

matched anatomical regions. Nonmyelinated

axons with diameter R 0.5 mm2 are highlighted in

orange; scale bar, 1 mm.

(H) Proportion of nonmyelinated axons with area

>0.5 or %0.5 mm2 from larvae obtained like in (A)

(***p < 0.001; Fisher’s exact test).

See also Figure S3.
used blue or far-red fluorescent bacteria to infect transgenic

larvae with green fluorescent myelinating membrane and red

fluorescent macrophages. Immediately after infection, macro-

phages were recruited to the injection site, entered the

spinal cord, and phagocytosed the majority of the bacteria;

this was equally the case for M. leprae, M. marinum and

M. marinum:PGL-1 (Movies S6, S7, and S8). Moreover, in the

context of each infection, macrophages, whether or not in-

fected, patrolled the axons, assuming a flattened, elongated

shape as they moved between them (Figure 5C; Movies S6,

S7, and S8). We noted that some infected macrophages moved

more slowly and eventually became sessile within the first 12

hours, resulting in prolonged intimate contact with the myelin

in discrete areas. This slowing down of infected macrophages

has been noted in M. marinum granulomas (Davis and Ramak-

rishnan, 2009). Here, too, we observed more slowly moving

infected macrophages in the context of all three infections,

suggesting it was an infection-dependent, but not PGL-1-

dependent, phenomenon (Movies S6, S7, and S8). This was

confirmed by a quantitative comparison of macrophage

behavior during the first 12 hours following M. marinum versus
978 Cell 170, 973–985, August 24, 2017
M. marinum:PGL-1 infection: there were no differences in

macrophage speed, shape, or tendency to associate with

myelin (Figures 5D–5F). Macrophage co-localization with

myelin continued to be similar between the two bacterial groups

at 2 days post-infection, when demyelination begins (Figures

5G and 5H). Yet, only colocalization of M. marinum:PGL-1-in-

fected macrophages with myelin produced myelin protrusions

(Figure 5I). All demyelinating lesions were associated with

macrophages in 10 of 11 animals scored (Figure S4; p = 0.01,

two-tailed binomial test with an expected 0.5 frequency). In

the 11th animal, 2 of the 3 demyelinating lesions were associ-

ated with macrophages, while the third had defined clusters

of bacteria with residual fluorescent macrophage membrane,

suggesting that the co-localized, infected macrophage had

died (Figures S4B and S4C). Finally, to directly test if macro-

phages were required for M. leprae-induced demyelination,

we created macrophage-depleted fish by administering an irf8

morpholino followed by clodronate liposomes (Pagán et al.,

2015). Macrophage depletion reduced myelin protrusions by

85% in M. leprae-infected larvae, confirming the essential role

of macrophages in early demyelination (Figure 5J).
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Figure 5. Macrophages Mediate M. leprae Demyelination

(A) TEM from 6 dpi (8 dpf) larva showingM. leprae bacilli (L) within a phagocyte contacting a myelinated axon. Dashed line indicated insets 1 and 2, shown in (B);

myelinated axons highlighted in pink; scale bar, 1 mm.

(B) Insets from (A), showing the M. leprae double membrane (arrows) and phagosomal membranes (arrowheads); scale bar, 1 mm.

(C) Rendered still images from a time-lapse movie (Movie S6) of an M. leprae-infected double-transgenic mbp;mpeg1 larva with fluorescent macrophages and

myelinating membrane. At 4 days post-fertilization, the larva was infected in the spinal cord and immediately imaged for 12 hr, revealing infected macrophages

patrolling intact myelin sheaths (a myelin-patrolling, infected macrophage highlighted in yellow). Scale bar, 10 mm.

(D) Proportion of uninfected (�) or infected (+) macrophages that colocalized with myelin in 4 dpf larvae infected with M. marinum or M. marinum:PGL-1.

n = number of macrophages scored.

(E) Mean speed of macrophages in the larvae from (D).

(F) Mean sphericity of macrophages in the larvae from (D).

(G) Mean number of macrophages per infected region in (5 dpf) mbp larvae 2 dpi with M. marinum or M. marinum:PGL-1. Numbers of fish, regions, and mac-

rophages scored per group are indicated.

(H) Mean number of macrophages per region that were both infected and myelin colocalized in the larvae from (G).

(I) Mean number of myelin protrusions per macrophage in the larvae from G. Student’s t test.

(J) Myelin protrusions per M. leprae-infected region in WT mbp larvae (+) or those depleted of macrophages (�) by injection with irf8 morpholino and lipo-

clodronate. Student’s t test. Data are representative of at least two separate experiments.

See also Figure S4 and Movies S3, S4, S5, S6, S7, and S8.
A Theoretical Framework for the Mechanism of PGL-1-
and Macrophage-Dependent Demyelination
The demyelination in leprosy is analogous to that of Gullain-

Barré syndrome and multiple sclerosis, in which macrophage
production of reactive oxygen species (ROS) and reactive nitro-

gen species (RNS) can trigger swelling and destruction of mito-

chondria and axons, contributing to demyelination (Bogie

et al., 2014; Kiefer et al., 2001). Aswith leprosy, multiple sclerosis
Cell 170, 973–985, August 24, 2017 979
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Figure 6. Nitric Oxide Is Necessary for Early Demyelination

(A) Representative confocal images of a macrophage aggregate in the spinal cord of an mpeg1 larva infected with M. leprae and stained with a-iNOS antibody.

Scale bar, 10 mm.

(B) Mean percentage of infectedmpeg1-positive macrophages that also express iNOS in 7 dpf larvae 5 dpi withWTM.marinum orM.marinum:PGL-1. (Student’s

t test.)

(C) Mean percentage of infected mpeg1-positive macrophages that stain with a-nitrotyrosine antibody (nitroT) in larvae like in (B). (Student’s t test).

(D) Mean number of myelin protrusions per animal in 5 dpf mbp larvae 2 dpi with M. leprae, which were treated with 0.5% DMSO vehicle (-), iNOS inhibitor

(L-NAME), or ROS/RNS scavenger (cPTIO). (**p < 0.01; ***p < 0.001; one-way ANOVA with Dunnett’s multiple comparison test.)

(E) Mean number of myelin protrusions per animal in 5 dpfmbp larvae 2 dpi withM.marinum:PGL-1, treated like in (D). (*p < 0.05; **p < 0.01; one-way ANOVAwith

Dunnett’s multiple comparison test.)

(F) Mean number of myelin protrusions per animal in 5 dpfmbp larvae 2 dpi withM.marinum:PGL-1, whichwere treated with 0.5%DMSO vehicle (‘‘-’’), nitric oxide

scavenger (cPTIO), or ROS scavenger NAC. (*p<0.05; ***p<0.001; one-way ANOVA with Dunnett’s multiple comparison test.)

(G) Mean number of myelin protrusions per animal in larvae infected like in (F), which were soaked post-injection in 0.5% DMSO vehicle (‘‘-’’) or in nitric oxide

donors SNAP or spermine NONOate (spNO). (*p<0.05; ***p<0.001; one-way ANOVA with Dunnett’s multiple comparison test.)

See also Figure S5.
affects both myelinated and nonmyelinated axons. Similarly, the

macrophages present in leprosy nerve biopsies express induc-

ible nitric oxide synthase (iNOS) and contain nitrotyrosine, a sta-

ble end product of nitric oxide production (Lockwood et al.,

2011; Schön et al., 2004). Moreover, recent work shows that

mitochondria are swollen and damaged in both myelinated and

nonmyelinated axons (Medeiros et al., 2016). Together, these

findings suggest a model in which PGL-1 induces iNOS expres-

sion in infected macrophages, resulting in damage to mitochon-

dria of adjacent axons. This model generates three testable pre-

dictions: (1) PGL-1-expressing bacteria induce production of

iNOS and nitric oxide in the macrophages they infect; (2) PGL-

1-induced nerve damage is nitric oxide dependent; and (3) nerve

damage is linked to mitochondrial damage, which is also PGL-1

dependent.

Nitric Oxide Production by Macrophages in Response to
PGL-1 Mediates Demyelination
To test the first prediction of our model, we asked if PGL-1

induces Nos2 (the gene that encodes iNOS) in cultured murine

bone marrow-derived macrophages. M. marinum:PGL-1 in-

duced 2.8-fold more Nos2 in macrophages than wild-type
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M.marinum, showing a substantial contribution fromPGL-1 (Fig-

ure S5A). In the zebrafish too, M. leprae- or M. marinum:PGL-1-

infected macrophages were iNOS and/or nitrotyrosine positive,

both in the periphery and in the nervous system (Figures 6A

and S5B–S5D). Again, M. marinum:PGL-1 infection was associ-

ated with more iNOS- and nitrotyrosine-positive macrophages

thanwild-typeM.marinum (Figures 6B and 6C). Thus, PGL-1-ex-

pressing mycobacteria induce macrophages to produce nitric

oxide through transcriptional induction of iNOS.

To test the second prediction of our model, we asked if nitric

oxide induces early demyelination by treating infected fish with

the iNOS inhibitor L-NAME or the nitric oxide scavenger cPTIO.

Both treatments inhibited demyelination, in larvae infected with

M. leprae or M. marinum:PGL-1 (Figures 6D and 6E). Two

RNS, nitric oxide and peroxynitrite, have been implicated in

damage to axons and myelin (Smith et al., 1999). Formation of

peroxynitrite requires superoxide anion, a ROS. To differentiate

between damage caused by nitric oxide and by peroxynitrite,

we treatedM.marinum:PGL-1-infected larvae with NAC, a scav-

enger of ROS. Demyelination was not significantly reduced in

NAC-treated animals, implicating nitric oxide, rather than perox-

ynitrite, as the primary contributor to demyelination. Further, the



nitric oxide donors SNAP and spermine NONOate induced

demyelination in larvae infected with wild-type M. marinum (Fig-

ure 6G). Notably, nitric oxide donors failed to cause demyelin-

ation in the absence of M. marinum infection (Figure 6G). The

most likely explanation for this is that the amount of nitric oxide

released by the donors is insufficient to produce demyelination.

M. marinum induces iNOS and nitric oxide in macrophages, but

this is insufficient for demyelination. The nitric oxide produced by

the donors and M. marinum together may cross the threshold

required to produce demyelination. Alternatively, nitric oxide

may act in concert with one or more additional macrophage de-

terminants that are induced by any virulent mycobacterium.

PGL-1-Induced Axonal Damage Is Associated with
Mitochondrial Swelling and Loss
The third prediction of our model is that mitochondrial damage is

linked to nerve damage, and is dependent on PGL-1 production

by bacteria. Confocal microscopy of mbp larvae expressing a

fluorescent protein in axonal mitochondria (neuronal tubulin pro-

moter driving expression of dsRed protein with a mitochondrial

signal sequence; see the STAR Methods) revealed both mito-

chondrial swelling and selective loss in regions close to demye-

linating lesions (Figure 7A). TEMs through demyelinating lesions

of M. leprae and M. marinum:PGL-1-infected larvae had fewer

axonal mitochondria compared to PBS-injected larvae (Figures

7B and 7C). The remaining mitochondria were enlarged in in-

fected larvae compared to PBS-injected controls, similar to the

mitochondrial swelling reported for leprosy and multiple scle-

rosis (Medeiros et al., 2016; Niki�c et al., 2011) (Figures 7D and

7E). If mitochondrial damage is linked to axonal damage, then

it should be most prevalent in swollen axons. Two analyses

showed that this was the case: first, the increase inmitochondrial

area in infection over PBS control occurred in axons with an area

R0.5 mm2, but not in those with an area <0.5 mm2 (Figures 7F and

7G). Second, within each of the three cohorts, mitochondrial

area was increased only in the large axons (R0.5 mm2)

of M. leprae and M. marinum:PGL-1-infected larvae, not in

PBS-injected larvae (Figure 7H). As expected, there was no

difference in mitochondrial area in the axons of PBS-treated

animals, where the differences in axon size reflect normal phys-

iological variation, rather than pathology. Collectively, these find-

ings support the model that reactive nitrogen species produced

by infected macrophages damage axonal mitochondria and

cause demyelination.

DISCUSSION

Our work suggests a mechanism for the earliest nerve injury

associated with leprosy: over-exuberant production of nitric

oxide by macrophages, in response to the M. leprae-specific

PGL-1, damages axonal mitochondria and initiates demyelin-

ation. Phenolic glycolipids likely evolved to increase infectivity

by recruiting macrophage subsets that are particularly permis-

sive to mycobacterial infection (Cambier et al., 2014). In an

accompanying study, we show that PGL induces tissue-resident

macrophages that first phagocytose infecting bacteria to ex-

press CCL2, which recruits permissive macrophages to the

site of infection enabling mycobacteria to transfer from the
microbicidal first-responding tissue macrophages into the re-

cruited growth-permissive monocytes (Cambier et al., 2017). In

this paper, we find that the specialized, triglycosylated form of

M. leprae PGL-1 retains this basal role, while acquiring additional

macrophage-modulating functions that produce demyelination.

PGL-1 has been found to alter inflammatorymediator expression

in cultured macrophages (Manca et al., 2012; Tabouret et al.,

2010), and our work now assigns a central role for this immuno-

modulation in early leprosy neuropathy.

In terms of the relevance of our findings to human leprosy,

macrophages, often infected, are a consistent presence within

early nerve lesions of leprosy patients (Job, 1973; Pandya and

Antia, 1974; Shetty and Antia, 1996; Shetty et al., 1988).

Furthermore, iNOS upregulation has been reported in both

‘‘pro-inflammatory’’ paucibacillary and ‘‘anti-inflammatory’’

multibacillary leprosy lesions (Lockwood et al., 2011; Teles

et al., 2013), both of which are associated with nerve damage.

As to how infected macrophages might reach nerves, one way

is by direct seeding from a skin granuloma into an underlying

nerve trunk. In support of this possibility, a leprosy cohort

study found that the most significant risk factor for develop-

ment of neuropathy in a peripheral nerve was the presence

of an overlying skin lesion (van Brakel et al., 2005). A second

possibility is through hematogenous dissemination. This

work and others suggest that circulating macrophages patrol

axons under homeostatic conditions, reaching axons by

extravasating from local blood vessels (Klein and Martini,

2016). Bacteremia is common in leprosy patients, with circu-

lating bacteria found in mononuclear phagocytes (Drutz

et al., 1972; Lane et al., 2006) and in blood vessels of appar-

ently normal skin (Ganapati and Chulawala, 1976). We suggest

that infected macrophages have a similar propensity to reach

nerves and patrol them to their uninfected counterparts. Some

may slow down and stall as Mycobacterium-infected macro-

phages are wont to do (Davis and Ramakrishnan, 2009). The

resultant prolonged intimate contact with the nerve may

initiate damage through the mechanism we have uncovered.

This hematogenous dissemination model predicts that

M. leprae-infected macrophages are widely distributed in

nerves. Indeed, biopsies of the apparently normal skin of

leprosy patients find subclinical, diffuse neuropathy in

conjunction with infected macrophages (Ganapati et al.,

1972; Pandya and Antia, 1974). Finally, household contacts

of leprosy patients are significantly more likely to have

M. leprae DNA in their peripheral blood than non-contacts,

and longitudinal follow-up shows that these individuals are

more likely to develop leprosy (Wen et al., 2013), suggesting

that hematogenous dissemination of M. leprae is a very early

and significant step in the pathogenesis of peripheral nerve

damage.

Our finding that both myelinated and nonmyelinated axons

are damaged by this mechanism further suggests its relevance

to human leprosy neuropathy, which affects both types of

axons (Medeiros et al., 2016; Shetty et al., 1988). Moreover,

nonmyelinated cutaneous nerve endings are often affected

early in infection, even before neurological symptoms appear

(de Freitas and Said, 2013; Ganapati et al., 1972; Pandya and

Antia, 1974). The idea that demyelination is a pathological
Cell 170, 973–985, August 24, 2017 981
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Figure 7. M. leprae Infection Damages Axonal Mitochondria

(A) Diagram (left) of a demyelinating lesion in a 2 dpi (5 dpf) mbp larva with fluorescent mitochondria in axons. Dashed boxes indicate insets 1 and 2, with

corresponding confocal images, showing mitochondria outside the lesion (inset 1) and those within the lesion (inset 2). Arrowheads indicate myelin protrusions;

arrows indicate enlarged mitochondria. Scale bar, 10 mm.

(B) Representative TEMs of matched anatomical regions showing the number of axon mitochondria (purple) in larvae injected with PBS, M. leprae, or

M. marinum:PGL-1. Scale bar, 1 mm.

(C) Proportion of axons with mitochondria to those without, in larvae like in (B); the number of axons scored are listed below (contingency analysis corrected for

multiple comparisons; **p = 0.004; ***p < 0.0002).

(D) Representative TEMs of enlarged mitochondria (purple) within enlarged axons (pink), in larvae like in (B). Scale bar, 1 mm.

(E) Mean (±SEM) area of mitochondria in axons, in larvae like in (B); number of mitochondria scored are listed below. (***p < 0.001; one-way ANOVAwith Dunnett’s

multiple comparison.)

(F) Mean (±SEM) area of mitochondria in nonmyelinated axons with area R0.5 mm2, in larvae like in (B) (*p < 0.05, **p < 0.01; one-way ANOVA with Dunnett’s

multiple comparison).

(G) Mean (±SEM) area of mitochondria in nonmyelinated axons with area <0.5 mm2, in larvae like in (B) (one-way ANOVA with Dunnett’s multiple comparison).

(H) Data from (F) and (G) are displayed per experimental group, showing mean (±SEM) area of mitochondria in large versus small nonmyelinated axons (one-way

ANOVA with Dunnett’s multiple comparison).
manifestation, rather than a cause of nerve injury, has gained

traction in the context of other demyelinating diseases, such

as multiple sclerosis (Niki�c et al., 2011).

The older model, which explains the neurotropism ofM. leprae

by evoking direct binding of PGL-1 to Schwann cell laminin a2

(Ng et al., 2000), is problematic in at least four ways. First, myco-
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bacterial species that lack PGL-1 and fail to cause neuropathy

are, nevertheless, able to bind laminin a2 (Marques et al.,

2001). Second, the model does not explain how M. leprae, a

nonmotile bacterium, reaches Schwann cells. Third, by requiring

high bacterial burdens within Schwann cells to cause demyelin-

ation, the model fails to explain the clinical findings of nerve



damage very early in infection, when only a few bacteria are pre-

sent in nerve lesions. Fourth, the earliest nerve impairment in

leprosy is in thermal sensation, which is mediated by nonmyelin-

ated fibers (de Freitas and Said, 2013; van Brakel et al., 2003).

Our findings resolve these inconsistencies by showing that it

is the PGL-1-stimulated macrophages that initiate damage

to nerves regardless of their myelination. This early innate

immune-mediated nerve injury may then progress by distinct

mechanisms in multibacillary and paucibacillary leprosy. In the

face of an inadequate adaptive immune response in multibacil-

lary leprosy, the inability of macrophages to control bacterial

growthmay result in their death, releasing bacteria into the extra-

cellular milieu of the nerve. These released bacteria could then

be taken up by Schwann cells. In paucibacillary leprosy, the

onset of an adaptive immune response may enable infected

macrophages to control intracellular M. leprae, while further

enabling, or even enhancing, their neuropathological response

(Scollard, 2008). This may be through the induction of pro-in-

flammatory cytokines such as interferon-g (Teles et al., 2013),

which may act by further stimulating reactive nitrogen species,

or by engaging distinct mechanisms.

Production of nitric oxide by macrophages and other myeloid

cells has been implicated in mitochondrial dysfunction and sub-

sequent axonal injury in multiple sclerosis and Guillain-Barré

syndrome (Bogie et al., 2014; Kiefer et al., 2001). Our work

may offer insights into these and other neurodegenerative dis-

eases in which myeloid cells are increasingly recognized as

contributing to neuropathology (Thompson and Tsirka, 2017),

as well as provide an experimental system in which to

explore them.
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Martini, R., Fischer, S., López-Vales, R., and David, S. (2008). Interactions be-

tween Schwann cells and macrophages in injury and inherited demyelinating

disease. Glia 56, 1566–1577.

Medeiros, R.C.A., Girardi, K.D., Cardoso, F.K.L., Mietto, B.S., Pinto, T.G.T.,

Gomez, L.S., Rodrigues, L.S., Gandini, M., Amaral, J.J., Antunes, S.L.G.,

et al. (2016). Subversion of Schwann cell glucose metabolism by Mycobacte-

rium leprae. J. Biol. Chem. 291, 24803.

Megason, S.G. (2009). In toto imaging of embryogenesis with confocal time-

lapse microscopy. In Zebrafish: Methods and Protocols, J.G. Lieschke, C.A.

Oates, and K. Kawakami, eds. (Humana Press), pp. 317–332.

Morell, P., and Quarles, R.H. (1999). Characteristic composition of myelin. In

Basic Neurochemistry: Molecular, Cellular and Medical Aspects, G.J. Siegel,

B.W. Agranoff, R.W. Albers, S.K. Fisher, and M.D. Uhler, eds. (Lippincott-Ra-

ven), pp. 56–67.

Müller, M., Leonhard, C., Krauthausen, M., Wacker, K., and Kiefer, R. (2010).

On the longevity of resident endoneurial macrophages in the peripheral ner-

vous system: a study of physiological macrophage turnover in bone marrow

chimeric mice. J. Peripher. Nerv. Syst. 15, 357–365.

Ng, V., Zanazzi, G., Timpl, R., Talts, J.F., Salzer, J.L., Brennan, P.J., and Ram-

bukkana, A. (2000). Role of the cell wall phenolic glycolipid-1 in the peripheral

nerve predilection of Mycobacterium leprae. Cell 103, 511–524.

Niki�c, I., Merkler, D., Sorbara, C., Brinkoetter, M., Kreutzfeldt, M., Bareyre,

F.M., Brück, W., Bishop, D., Misgeld, T., and Kerschensteiner, M. (2011). A

reversible form of axon damage in experimental autoimmune encephalomy-

elitis and multiple sclerosis. Nat. Med. 17, 495–499.

Noordeen, S. (1994). The epidemiology of leprosy. In Leprosy, R.C. Hastings,

ed. (Churchhill Livingstone), pp. 29–48.

O’Donnell, K.C., Vargas, M.E., and Sagasti, A. (2013). WldS and PGC-1a regu-

late mitochondrial transport and oxidation state after axonal injury.

J. Neurosci. 33, 14778–14790.

Pagán, A.J., Yang, C.T., Cameron, J., Swaim, L.E., Ellett, F., Lieschke, G.J.,

and Ramakrishnan, L. (2015). Myeloid growth factors promote resistance to

mycobacterial infection by curtailing granuloma necrosis throughmacrophage

replenishment. Cell Host Microbe 18, 15–26.

Pandya, N.J., and Antia, N.H. (1974). The value of scrotal biopsy in leprosy.

Lepr. Rev. 45, 145–152.

Peri, F., and Nüsslein-Volhard, C. (2008). Live imaging of neuronal degradation

by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell

133, 916–927.

http://refhub.elsevier.com/S0092-8674(17)30866-8/sref10
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref10
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref10
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref11
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref11
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref11
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref13
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref13
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref14
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref14
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref14
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref15
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref15
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref16
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref16
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref16
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref16
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref17
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref17
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref18
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref18
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref19
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref19
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref19
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref19
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref20
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref20
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref21
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref21
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref22
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref22
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref22
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref23
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref23
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref23
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref24
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref24
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref25
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref25
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref25
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref26
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref26
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref26
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref27
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref27
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref27
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref27
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref28
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref28
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref29
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref29
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref29
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref30
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref30
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref30
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref31
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref31
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref31
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref31
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref32
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref32
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref32
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref32
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref33
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref33
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref34
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref34
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref34
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref35
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref35
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref35
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref35
http://dx.doi.org/10.1101/127639
http://dx.doi.org/10.1101/127639
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref36
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref36
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref36
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref37
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref37
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref37
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref38
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref38
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref39
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref39
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref39
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref40
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref40
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref40
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref40
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref41
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref41
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref41
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref42
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref42
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref42
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref42
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref43
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref43
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref43
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref43
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref44
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref44
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref44
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref45
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref45
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref45
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref45
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref45
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref46
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref46
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref47
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref47
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref47
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref48
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref48
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref48
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref48
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref49
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref49
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref50
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref50
http://refhub.elsevier.com/S0092-8674(17)30866-8/sref50


Ramakrishnan, L. (2004). Using Mycobacterium marinum and its hosts to

study tuberculosis. Curr. Sci. 86, 82–92.

Rambukkana, A. (2000). How does Mycobacterium leprae target the periph-

eral nervous system? Trends Microbiol. 8, 23–28.

Rambukkana, A., Zanazzi, G., Tapinos, N., and Salzer, J.L. (2002). Contact-

dependent demyelination by Mycobacterium leprae in the absence of immune

cells. Science 296, 927–931.

Renault, C.A., and Ernst, J.D. (2015). Mycobacterium leprae (Leprosy). In Man-

dell, Douglas, and Bennett’s Infectious Disease Essentials, J.E. Bennett, R.

Dolin, and M.J. Blaser, eds. (Elsevier), pp. 2819–2831.

Ramirez-Carrozzi, V.R., Braas, D., Bhatt, D.M., Cheng, C.S., Hong, C., Doty,

K.R., Black, J.C., Hoffmann, A., Carey, M., and Smale, S.T. (2009). A unifying

model for the selective regulation of inducible transcription by CpG islands and

nucleosome remodeling. Cell 138, 114–128.

Roca, F.J., and Ramakrishnan, L. (2013). TNF dually mediates resistance and

susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell

153, 521–534.

Schön, T., Hernández-Pando, R., Baquera-Heredia, J., Negesse, Y., Becerril-

Villanueva, L.E., Eon-Contreras, J.C.L., Sundqvist, T., and Britton, S. (2004).

Nitrotyrosine localization to dermal nerves in borderline leprosy. Br. J. Derma-

tol. 150, 570–574.

Scollard, D.M. (2008). The biology of nerve injury in leprosy. Lepr. Rev. 79,

242–253.

Scollard, D.M., Adams, L.B., Gillis, T.P., Krahenbuhl, J.L., Truman, R.W., and

Williams, D.L. (2006). The continuing challenges of leprosy. Clin. Microbiol.

Rev. 19, 338–381.

Shetty, V.P., and Antia, N.H. (1996). A semi quantitative analysis of bacterial

load in different cell types in leprous nerves using transmission electron micro-

scope. Indian J. Lepr. 68, 105–108.

Shetty, V.P., Antia, N.H., and Jacobs, J.M. (1988). The pathology of early

leprous neuropathy. J. Neurol. Sci. 88, 115–131.

Siamwala, J.H., Veeriah, V., Priya, M.K., Rajendran, S., Saran, U., Sinha, S.,

Nagarajan, S., Pradeep, T., and Chatterjee, S. (2012). Nitric oxide rescues

thalidomide mediated teratogenicity. Sci. Rep. 2, 679.

Smith, K.J., Kapoor, R., and Felts, P.A. (1999). Demyelination: the role of reac-

tive oxygen and nitrogen species. Brain Pathol. 9, 69–92.

Tabouret, G., Astarie-Dequeker, C., Demangel, C., Malaga, W., Constant, P.,
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Ramirez-Carrozzi et al., 2009 N/A
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Ramirez-Carrozzi et al., 2009 N/A

irf8 morpholino, sequence: AATGTTTCGCTTACTTTGAAAATGG Li et al., 2011 N/A
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Clay et al., 2007 N/A
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myD88morpholino, sequence: GTTAAACACTGACCCTGTGGATCAT Bates et al., 2007 N/A

Recombinant DNA

histone labeling plasmid H2B-CFP Megason, 2009 Addgene # 53748

Tol2 plasmid nbt-GAL4 this paper N/A

Tol2 plasmid UAS-MLS-dsRed O’Donnell et al., 2013 N/A

Tol2 plasmid mbp:eGFP-CAAX Almeida et al., 2011 N/A

pWM122 plasmid with M. leprae PGL-1 genes Tabouret et al., 2010 N/A

Software and Algorithms

Imaris Bitplane N/A

ImageJ Abramoff et al., 2004 N/A

FPC (ImageJ); macro for quantification of bacterial burden by
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Takaki et al., 2013 N/A
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Zebrafish husbandry and experiments were conducted in compliance with guidelines from the U.S. National Institutes of Health and

approved by the University of Washington Institutional Animal Care and Use Committee, the Office of Animal Research Oversight of

the University of California Los Angeles, and the Institutional Biosafety Committee of the University of California Los Angeles. WT AB

strain zebrafish or transgenics in the AB background were used, including Tg(kdrl:dsRed)s843 (Jin et al., 2005), Tg(mbp:CAAX-

GFP)ue2Tg (Almeida et al., 2011), Tg(mpeg1:Brainbow)w201 (Pagán et al., 2015), Tg(lysC:EGFP)nz117 (Hall et al., 2007) and Tg(mpe-

g1:YFP)w200 (Roca and Ramakrishnan, 2013). Larvae were anesthetized with 0.02% buffered tricaine, (MS-222, Sigma) as described

(Takaki et al., 2013), prior to imaging or infection. Larvae of indeterminate sex were infected by injection into the caudal vein or hind-

brain ventricle at 2 dpf using a capillary needle containing bacteria diluted in PBS + 2% phenol red (Sigma), as previously described

(Takaki et al., 2013), or infected in the ventral spinal cord adjacent to the cloaca at 2-4 dpf. Titered, single-cell suspensions were pre-

pared for all M. marinum strains prior to infection by passing cell pellets from mid-log phase cultures (OD600 = 0.5 ± 0.1) repeatedly

through a syringe to remove clumps, as described (Takaki et al., 2013). When two different bacterial strains were compared, several

groups of larvae (n = 20 or more) were infected with different dilutions of each strain; on the day of the comparison, equivalently-in-

fected groups of larvae (as determined by FPC) were used to assure the comparison was not biased by in vivo growth differences

between the two strains. After infection, larvae were housed at 28.5�C, in fish water containing 0.003% PTU (1-phenyl-2-thiourea,

Sigma) to prevented pigmentation.

METHOD DETAILS

Drugs were administered by adding them to the fish water; fresh drug (or DMSO vehicle for control fish) was added every 12 hr. To

assess drug treatment in infected fish, equivalently-infected sibling larvaeweremixed in a petri dish and held at 28.5�C for 4-6 hr after

injection to allow macrophage recruitment to the injection site; larvae were then randomly allocated to the drug-treated or control

group (0.5% DMSO). All drugs were dissolved in DMSO (dimethyl sulfoxide, Sigma), such that the final concentration in fish water

was 0.5% DMSO. L-NAME (1000 mM), cPTIO (500 mM) or NAC (40 mM) were used to inhibit iNOS and scavenge reactive oxygen/ni-

trogen species, as described (Cambier et al., 2014; Roca and Ramakrishnan, 2013). SNAP (100 mM) and spermine NONOate (10 mM)

were used to exogenously add nitric oxide, as described (Kong et al., 2016; Siamwala et al., 2012).

To detect iNOS or nitrotyrosine in infected larvae, equivalently-infected larvae were euthanized by tricaine overdose, fixed over-

night at 4�C in 4% paraformaldehyde (Sigma) + 4% sucrose (Fisher), permeabilized for 30 min in PBST (PBS + 0.5% Triton X-100

(Sigma)), then stained overnight at 4�C in iNOS or nitrotyrosine antibodies (see Key Resources Table) diluted 1:200, as described

(Cambier et al., 2014; Elks et al., 2014). After washing in PBST, secondary antibodies conjugated to Alexa Fluors (Molecular Probes)

were added at 1:500 and incubated overnight at 4�C.
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Bone-marrow derivedmacrophages (BMDMs)were generated fromC57BL/6mice purchased fromThe Jackson Laboratory. Bone

marrow cells extracted from femora and tibiae of male mice at 6-10 weeks of age were cultured in BMDMmedia consisting of DMEM

(GIBCO) with 20%FBS (Omega), conditionedmedia containing�100 ng/mLM-CSF from L929 cells (kind gift fromG. Cheng), and 1X

Pen/Strep (GIBCO) for 6 days at 37�C under 4% CO2. Cells were washed twice with PBS and medium replaced with antibiotic-free

BMDMmedium before cells were place in an incubator at 35�C and 4%CO2 for at least an hour before infection or stimulation. Cells

were infected with M. leprae (harvested from footpads of nude mice) at indicated MOI or with equivalent volumes of log-phase

(OD600 = 0.5 ± 0.1) WT M. marinum or M. marinum:PGL-1 cultures (growth conditions described below). An equivalent volume of

PBS vehicle was added to cell medium for control cells. Approximate MOI for M. marinum was calculated from the optical density

of the culture, then exact MOI was obtained by growing the cultures on 7H10 plates. MOI for M. leprae was calculated based on

counting bacilli. For PGL-1 stimulation of cells, PGL-1 purified from the livers of M. leprae-infected armadillos (BEI, see Key Re-

sources Table) was resuspended in PBS + 1% DMSO by sonication, then added to cells at a concentration of 10 mg/mL. For control

cells, an equivalent volume of PBS + 1% DMSO was added.

Cells were harvested at 0, 2, 6, or 24 hr post-stimulation or infection by addition of 500 mL Trizol (Invitrogen), and RNA extracted

using the RNeasyMini Kit (QIAGEN), as described (Teles et al., 2013). After DNase treatment (QIAGEN) to remove genomic DNA, RNA

concentration was obtained by spectrophotometry and equivalent amounts of RNA were used as template for first cDNA strand syn-

thesis, which was performed using the iScript cDNA synthesis kit (BioRad) and a mixture of random hexamer and oligo(dT) primers

(Bio-Rad). Real-time PCR of cDNA was performed using SYBR Green (Kapa Biosystems, Roche) fluorescence as a surrogate for

transcript abundance; reactions were performed on a CFX96 Realtime System machine (BioRad). To detect fold change in iNOS

mRNA abundance, iNOS transcript was normalized to beta actin transcript (see Key Resources Table for primers) and each time-

point was compared to control cells using the delta-delta-Ct method.

Morpholinos (Gene Tools; see Key Resources Table for sequences) were used to block translation or splicing of transcript for irf8

(0.6mM) (Li et al., 2011), pu.1 (mixture of 0.375mM component 1 and 0.025mM component 2) (Clay et al., 2007),myD88 (5mM) (Bates

et al., 2007; Cambier et al., 2014), or ccr2 (0.3mM) (Cambier et al., 2014). Morpholinos or in vitro-transcribed H2B-CFP (Megason,

2009) were diluted in tango buffer (Thermo Scientific) containing 2% phenol red (Sigma) and injected into the yolk of 1-2 cell-stage

embryos in �1 nL (Tobin et al., 2012). Liposomes loaded with clodronate or PBS (van Rooijen et al., 1996) were diluted 1:5 in PBS +

2% phenol red and injected into 2-dpf-old larvae in �10 nL via the caudal vein; liposomes were re-administered every 4 days. To

generate larvae with fluorescent mitochondria in axons, eggs were coinjected at the 1-to-4-cell stage with 50 mg/mL in vitro-tran-

scribed tol2 transposase RNA, 25 ng/mL of an existing pDEST-UAS:MLS-dsRed plasmid (O’Donnell et al., 2013), and 25 ng/mL of

a constructed pDEST Tol2 plasmid consisting of GAL4 expressed from the Xenopus laevis neuronal beta tubulin (nbt) promoter

(Peri and Nüsslein-Volhard, 2008). To generate larvae with individual labeled oligodendrocytes, eggs were coinjected at the 1-to-

4-cell stage with 50 mg/mL in vitro-transcribed tol2 transposase RNA and 1 ng/mL of the mbp:eGFP-CAAX plasmid (Almeida et al.,

2011). At 3 dpf, larvae were screened by fluorescence to identify those that had an individual GFP-positive oligodendrocyte near

the cloaca; diagrams of these larvae were drawn at 4 dpf to indicate the location of the GFP-positive cell. The diagrams were

used to guide injection of bacteria or PBS into the spinal cord adjacent from the cloaca, as closely as possible to the GFP-positive

oligodendrocyte. After fluorescence imaging to confirm successful injection, larvae were imaged by confocal (see below).

M.marinumMstrain (ATCC #BAA-535) and its derivative,M.marinum:PGL-1, expressing tdTomato, wasabi or eBFP under control

of the msp12 promoter (Cosma et al., 2006; Takaki et al., 2013), were grown under hygromycin (Mediatech) or kanamycin (Sigma)

selection in 7H9 Middlebrook medium (Difco) supplemented with oleic acid, albumin, dextrose, and Tween-80 (Sigma) (Takaki

et al., 2013).M.marinum:PGL-1was constructed by transformingM.marinumwith the integrating plasmid pWM122, which encodes

theM. leprae genes ML0126, ML0127, ML0128, ML2346c, ML2347, and ML2348 under theM. fortuitum pBlaF* promoter (Tabouret

et al., 2010). Kanamycin-resistant transformants were confirmed by PCR using primers targeting all six M. leprae genes (Tabouret

et al., 2010). A single transformant was further confirmed by mass spectrometry of its phenolic glycolipids; this strain was used

for all subsequent experiments. For infections, M. leprae was isolated from mouse footpads, labeled with fluorescent dye

(PKH67, PKH29, or CellVue Claret, Sigma), then tested for viability by radiorespirometry, as described (Lahiri et al., 2005). Only prep-

arations that exceeded 80% viability were used for infection. Inoculum was calculated based on enumeration performed by the

NHDP, with 106 M. leprae/mL. P. aeruginosa PAO1 expressing GFP has been described (Brannon et al., 2009).

To determine the structure ofmycobacterial phenolic glycolipids,M.marinumWTandM.marinum:PGL-1were cultured in 20mL of

7H9medium, supplemented with 10% albumin/dextrose/catalase (EMDChemicals, San Diego, CA), to mid-log phase (OD600 = 0.5 ±

0.1). Total lipids were extracted from cell pellets using 20mL LC-MS grade chloroform:methanol (Fisher) at 2:1, then 1:1, then 1:2, for

1 hr each, as described (Layre et al., 2011). Collected solvents were dried under nitrogen and total lipids weighed. Each lipid extract,

in addition to PGL-1 standard from M. leprae (BEI) and PGL-mar standard from WT M. marinum, was analyzed on an Agilent Tech-

nologies 6520 Accurate-Mass Q-Tof and a 1200 series HPLC system with a Varian Monochrom diol column (3 mm x 150 mm x 2mm)

and a Varian Monochrom diol guard column (3 mm x 4.6 mm). Lipids were resuspended at 0.5 mg/mL in solvent A (hexanes:isopro-

panol, 70:30 [v: v], 0.02% [m/v] formic acid, 0.01% [m/v] ammonium hydroxide), then 10 mg were injected and the column was eluted

at 0.15mL/min with a binary gradient from 0% to 100% solvent B (isopropanol:methanol, 70:30 [v/v], 0.02% [m/v] formic acid, 0.01%

[m/v] ammonium hydroxide): 0–10min, 0%B; 17–22min, 50%B; 30–35min, 100%B; 40–44min, 0%B, followed by additional 6 min

0% B postrun. Ionization was maintained at 325�Cwith a 5 L/min drying gas flow, a 30 psig nebulizer pressure, and 5,500 V. Spectra
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were collected in positive ion mode fromm/z 100 to 3,000 at 1 spectrum/s. Continuous infusion calibrants includedm/z 121.050873

and 922.009798 in positive ion mode. Collision-induced dissociation was performed with an energy of 30 V.

Wide-field microscopy was performed using a Nikon Eclipse Ti-E equipped with a C-HGFIE 130W mercury light source, Chroma

FITC (41001) filter, and 3 2/0.10 Plan Apochromat objective. Fluorescence images for evaluating bacterial escape from the vascu-

lature were captured with a CoolSNAP HQ2 Monochrome Camera (Photometrics) using NIS-Elements (version 3.22). Quantification

of fluorescent bacterial infection, using Fluorescent Pixel Count (FPC) quantification of images of individual embryos, was performed

using the FPC macro in ImageJ, as described (Takaki et al., 2012).

For confocal imaging, larvae were imbedded in 1.5% low melting-point agarose (Davis and Ramakrishnan, 2009). A series of z

stack images with a 2-3 mm step size was generated through the infected spinal cord with the image centered at the injection site

or cloaca, using either the galvo scanner (laser scanner) of the Nikon A1 confocal microscope with a3 20 Plan Apo 0.75NA objective,

or the resonant laser scanner of a Leica TCS-SP5 AOBS confocal microscope with a 20x Plan Apo 0.70 NA. Bacterial burdens were

determined by using the three-dimensional surface-rendering feature of Imaris (Bitplane Scientific Software) (Yang et al., 2012).

Macrophage numbers, shape and speed were determined using tracking of surface-rendered features on Imaris. When events

were compared between larvae, identical confocal laser settings, software settings and Imaris surface-rendering algorithims

were used.

Before fixing larvae for TEM, they were imaged by confocal microscopy in order measure the distance from the cloaca to the spinal

cord lesion; this allowed sections to be taken through confirmed demyelinating lesions after the larvae were fixed, or through sites of

PBS-injection in controls. After rescuing larvae from 1.5% agarose used for confocal imaging, healthy larvae were anesthetized,

cooled to 4�C, then fixed overnight in ice-cold 0.1 M sodium cacodylate (Sigma) containing 2% glutaraldehyde (ElectronMicroscopy

Services), 4% paraformaldehyde (Electron Microscopy Services) and 4% sucrose (Fisher) (Czopka and Lyons, 2011). Following

several washes in buffer, the larvae were postfixed in a solution of 2% osmium tetroxide (Electron Microscopy Services) and

0.1M imidazole (Electron Microscopy Services) in cacodylate buffer for 1 hr on ice. The larvae were rinsed multiple times in water

and treated with 0.5% uranyl acetate (Electron Microscopy Services) overnight at 4�C. They were then dehydrated through a graded

series of ethanols (from 30% to 100%), passed through propylene oxide (Electron Microscopy Services) and infiltrated with Epo-

nate12 (Ted Pella) overnight. The larvaewere embedded in fresh Eponate12 and the blocks polymerized at 60�C. The areas of interest
were identified relative to the cloaca by comparing to confocal imaged taken of the fish before fixation, and 50 nm (silver interference

color) sections were taken through these areas on an ultramictome (RMCMTX) and deposited on grids. The grids were stained with

saturated uranyl acetate (Electron Microscopy Services) and Reynolds lead citrate (Fisher) and examined on a JEOL 100CX electron

microscope at 60kV. Images were collected on film, and then scanned at 1200 dpi to create digital files. Axons were identified by the

presence of microtubules and/or microfilaments and an intact outer membrane. Decompactedmyelin was identified by the presence

of large, electron-lucent spaces in between myelin lamellae that were not observed in the absence of infection. Myelin dissociated

from axons was identified by the presence of electron dense ‘‘whorls’’ of myelin lamellae that did not contain an axon. Mitochondria

were identified by an intact double membrane and cristae. Axon number, myelination, size, and presence of mitochondria were

scored by randomly selecting axons in each image. To assure that axons selection was truly random, each image was opened in

its original dimensions in Adobe Photoshop (Adobe, version 12.1) and overlaid with a 50-pixel grid; only axons under grid nodes

were scored (Czopka and Lyons, 2011).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed on Prism (version 5.0a, GraphPad). Not significant, pR 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001;

**** p % 0.0001.

DATA AND SOFTWARE AVAILABILITY

The following software was used: Adobe Photoshop and Adobe Illustrator (quantification of axons, myelin andmitochondria in TEMs;

figure preparation), ImageJ (quantification of axons, myelin andmitochondria in TEMs; bacterial burden by FPC), and Imaris (tracking

and rendering confocal objects); see Key Resources Table for more information.
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Supplemental Figures

Figure S1. M. leprae-Infected Macrophages Escape Circulation, Related to Figures 1G and 1H

(A) Confocal image from Figure 1G of a 4 dpf kdrl:dsRed larva, which has fluorescent blood vessels, 2 days post-infection (dpi) with fluorescentM. leprae; dashed

lines define insets (1-4) shown in B. 10 mm bar.

(B) Monochannel and merged images of insets from A, showing M. leprae within cells, likely macrophages, which are visible by Nomarski microscopy. Arrows,

intracellular M. leprae retained in vessels; arrowheads, intracellular M. leprae outside vessels. 10 mm bar.



H+

-a

-CH3OH

OCH3O O
OO

O

O

Me

MeO
HO

HO

1140.01
a

979.94

947.91

161.08

Wildtype M. marinum phenolic glycolipid (PGL-mar) B

C

A

H+

OCH3O O
OO

O

O

Me

MeO
HO

O

O
Me

MeO OMe
HO

O

MeO
OH

MeOH2C
O -b

-a

-c

-CH3OH

150400 .19

b

a

c

1314.10

1140.01

979.94

947.91

525.25

M. marinum:PGL-1 phenolic glycolipid 

4
+

H+

OCH3O O
OO

O

O

Me

MeO
HO

O

O
Me

MeO OMe
HO

O

MeO
OH

MeOH2C
O

-b

-a

-c

-CH3OH

1574.27

1384.18

1210.09

1050.02

1017.99

b

a

c

525.25

-b

-a

-c

-CH3OH

1518.20

1328.12

1154.03

993.96

961.93

M. leprae phenolic glycolipid (PGL-1) 

979.9402

collision of m/z 1567.44 [M+NH4]+ (2.7-3.2 mins)

537.5030

1140.0143
947.9151

161.0890co
un

ts
 x

 1
03

co
un

ts
 x

 1
02

co
un

ts
 x

 1
04

2

0

6

4

8

collision of m/z 1903.58 [M+NH4]+ (3.0-4.2 mins)

collision of m/z 2043.75 [M+NH4]+ (3.0-3.4 mins)

m/z200 400 600 800 1000 1200 1400

200 400 600 800 1000 1200 1400 1600 1800

2

0

6

4

8
979.9394

537.5030 1140.0192

947.9125

525.2516
1314.0990

0

1

2

509.4713

1154.0312

1050.0186

525.2542 1574.2697
1384.1746

993.9561
961.9300

1210.0922

m/z
200 400 600 800 10001200 1400 1600 1800 2000

[M+NH ]  = 2043.75

4
+[M+NH ]  = 1903.56

4
+[M+NH ]  = 1567.45

-NH3

H+
HO

509.47

H+
HO

537.50

-NH3

OMe

MeO
HO

HO

-NH3

H+
HO

537.50

1504.19

H+

1504.2000

Figure S2. Collision-Induced Dissociation of Mycobacterial PGLs, Related to Figures 3A and 3B

(A) Collision-induced dissociation of an ammoniated adduct of PGL-1 standard isolated from M. leprae shows calculated masses on the structure (left) with

detected masses shown in the chromatogram (right). 30V collision energy; blue diamond = collided ion. Detected ions are assigned when they match the

calculated masses within 10 parts per million (ppm), and the detailed substructures shown are consistent with known natural PGL components, but are not

established directly. a, b and c correspond to the proximal, intermediate distal monosaccharides from M. leprae PGL-1.

(B) Collision-induced dissociation of PGL-mar standard isolated from WT M. marinum, shown as in (A).

(C) Collision-induced dissociation of PGL-1 from total lipid extract of an M. marinum:PGL-1 log phase culture, shown as in A. The fragments at m/z 525.25

detected in collision of PGL-1 from M. marinum:PGL-1 (C) and M. leprae (A), correspond to the known mass of PGL trisaccharides. In M. marinum:PGL-1 we

detected PGL fragments corresponding to the loss of mycocerosic acid and monosaccharide c (m/z 1504.19) or the disaccharide cb (m/z 1314.10) or the

trisaccharide cba (m/z 1140.01). These fragments provide a highly specific signature for the trisaccharide structure that is seen also inM. leprae PGL-1 fragments

m/z 1574.27, m/z 1384.18 and m/z 1210.09 (A).



Figure S3. Nerve Damage in Infected Larvae, Related to Figures 3C and 4

Lower magnification views ofmbp:eGFP-CAAX larvae at 2 dpi (4 dpf) or 4 dpi (6 dpf) withM. leprae andM. marinum:PGL-1, showing the apparently intact myelin

sheath outside of the lesion (M. marinum shown for comparison). 10 mm bar.

(A) 2 dpi, M. leprae.

(B) 4 dpi, M. leprae.

(C) 2 dpi, M. marinum:PGL-1.

(D) 2 dpi, WT M. marinum.

(E) Mean (±SEM) number of myelinated axons randomly selected (see the STARMethods) in the hemi-spinal cords of 5 dpf larvae 2 days post-injection (dpi) with

PBS control vehicle (white), M. leprae (black) or M. marinum:PGL-1 (gray). 3 larvae per group.

(legend continued on next page)



(F) Mean (±SEM) number of total axons, quantified as in (E).

(G) Two additional examples of myelin decompaction and dissociation in the spinal cords ofM. leprae-infected fish from Figure 4B. Highlights indicate myelinated

axons (pink), nonmyelinated axons (orange), decompacted myelin (green highlight and arrows), and myelin dissociated from axons (blue highlight and arrows).

10 mm bars.



Figure S4. Association of Infected Macrophages with Demyelinating Lesions, Related to Figure 5I

At 2 days post-infection (5 dpf), nerve lesions were identified in M. marinum:PGL-1-infected mbp:eGFP-CAAX; mpeg1:Brainbow larvae (Figure 5I).

(A) Each lesion was scored for presence or absence of infected macrophages; association of infected macrophages with myelin protrusions was deemed

significant (p = 0.01) with a two-tailed binomial test.

(B) Lesion from fish #7 (A), which had 3 demyelinating lesions (dashed boxes). For clarity, red macrophages or fragments of their red membrane are shown as

rendered objects; green myelin and blue bacteria are show as the unmodified fluorescent images. 10 mm bar.

(C) Insets of each lesion from B, showing myelin protrusions and colocalized, infected macrophages that are still intact (1 and 2) or fragmented (3) and dead.

Arrowheads indicate myelin protrusions; for clarity, not every myelin protrusion that was scored is indicated with an arrowhead. White arrows, intact macro-

phages; yellow arrows, fragments of dsRed-positive macrophage membrane. 10 mm bars.



Figure S5. Nitric Oxide Production in Infected Macrophages, Related to Figure 6

(A) Mean (±SEM) fold change of Nos2 (iNOS) transcript in WT murine macrophages, 6 hr after infection with WTM. marinum orM. marinum:PGL-1 (both MOI 1),

compared to uninfected cells. (Average of 3 independent experiments; Student’s t test).

(B) Representative confocal images of a macrophage aggregate in an mpeg1 larva infected with M. leprae and stained with a-iNOS antibody. 10 mm bar.

(C) Representative confocal images of amacrophage aggregate in anmpeg1 larva infectedwithM.marinum:PGL-1 and stainedwith a-iNOS antibody. 10 mmbar.

(D) Representative confocal images of a macrophage aggregate in larvae as in C, stained with a-nitrotyrosine antibody. 10 mm bar.
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